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Abstract  In this paper, a novel approach to topic modeling based 
on the Higher Order Learning framework, Higher-Order Latent 
Dirichlet Allocation (HO-LDA), is applied to a critical issue in 
homeland security, nuclear detection.  In addition, this research 
strives to improve topic models in the ‘real time’ environment of 
online learning. In total, seventeen different nuclear radioisotopes 
are classified, and performance of Higher-Order versus 
traditional techniques is evaluated. 
This project employs LDA and HO-LDA on a nuclear detection 
numeric dataset to gain a topic decomposition of instances.  These 
learned topics are then used as features in a traditional 
supervised classification algorithm.  In essence, the LDA or HO-
LDA topic assignments are used as features in supervised 
learning algorithms that predict the class (isotope), treating LDA 
or HO-LDA as a feature space transform.  Using Topic Modeling 
on numeric nuclear detection data is cutting edge, as to our 
knowledge this has never been done before on a nuclear detection 
dataset.  Two methods of feature transformation are evaluated, 
including Multinomial Feature Creation and Maximum Channel 
Value Feature Creation. Results demonstrate further evidence 
that Higher Order Learning techniques can be usefully applied in 
topic modeling applied to nuclear detection. 
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I.  INTRODUCTION 
One of the challenges facing our world today is the 

proliferation of weapons of mass destruction, including the 
‘dirty bomb’ (a conventional bomb that contains explosives as 
well as radioactive material). One of the technologies 
employed to detect nuclear materials usable in such devices are 
handheld radiation detectors. Such detectors employ various 
technologies for radio-nuclear classification based on the 
statistical properties of spectral emissions, which are high-
dimensional in nature. When classifying such data, the most 
important task is to distinguish known or unknown threat 
isotopes from harmless radioisotopes.  These isotopes must 
also be distinguished from the naturally occurring radioactive 
background. The ability to classify isotopes when the signal is 
not strong can be especially useful.  In previous research, signal 
data from a handheld radiation detector named the 
InterceptorTM was studied in order to improve the detection and 
identification of nuclear isotopes at seaports, in particular with 
the Higher-Order Naïve Bayes (HONB) classifier [8].  The 
prior research focused on individual isotope detection to 

determine if an individual radioisotope was present or absent.  
The next step of this research effort is to explore the use of a 
new class of learning algorithms known as Topic Models in the 
domain of nuclear detection. Given the growing importance of 
modeling data in real-time, leveraging topic models using 
online learning is also an important focus of the research.  In 
this context, we present a novel approach to topic modeling 
based on the Higher Order Learning framework, Higher-order 
Latent Dirichlet Allocation (HO-LDA), and its application to a 
critical issue in homeland security, nuclear detection. 

This paper is organized as follows. In section II, 
background and related work is presented. Following this, the 
Approach and Results are presented in sections III and IV, 
followed by Conclusions in section V. 

II. BACKGROUND AND PRIOR WORK 

A. Nuclear Detection 
The first atomic bomb was detonated in New Mexico in 

July 1945.  Since then, nuclear warfare has been a top issue of 
national security.  Currently, a major concern is nuclear 
terrorism.  The fear is that a terrorist group will make, steal, or 
obtain a nuclear weapon or nuclear materials to produce a 
‘dirty bomb’.  Despite the fact that this is an extremely unlikely 
scenario, the extraordinarily high consequences make it an 
important topic in national security.  The detonation of a ‘dirty 
bomb’ is considered much more feasible (versus a terrorist 
group stealing or making a nuclear weapon), and this is a 
scenario that also could have a horrific outcome.  While a dirty 
bomb wouldn’t contain as high of an amount of radiation as a 
nuclear weapon, the bomb could still cause many deaths, and 
the residue from the blast could cause contamination of the 
area, though not nearly as much as from a nuclear weapon.  
Much of the damage from a dirty bomb would be from the 
initial blast; however the economic disruption caused by such a 
terrorist act is also a significant concern. 

The use of scanners at seaports for the detection of nuclear 
isotopes is thus important for national security.  Improvement 
of the performance of such scanners is an important technical 
goal, particularly handheld scanners such as the Thermo 
Scientific InterceptorTM.  The goal of this research is the 
improvement of the detection and identification of nuclear 
radioisotopes.   

B. Topic Modeling  
Topic Models are probabilistic models that model common 

patterns across a corpus of related text documents. Topic 



models treat the documents as a set of observations that are 
generated by a probabilistic process using latent information, a 
set of topics. This latent information is then learned using 
posterior inference and can be used to perform inference on 
new data. There are several variations of topics models, each 
depicted by a directed graphical model. An important common 
underlying assumption of these models is that the documents 
are a bag-of-words, in other words, the order or words is not 
important. Latent Dirichlet Allocation (LDA) is seminal work 
which was extended in several follow-on research efforts.  

LDA was first proposed by Blei in [9]. In LDA, the 
observed data are the words of each document and the hidden 
variables represent the latent topical structure, in other words, 
the topics themselves and how each document exhibits them. 
Given a collection, the posterior distribution of the hidden 
variables given the observed documents determines a hidden 
topical decomposition of the collection. Applications of topic 
modeling use posterior estimates of these hidden variables to 
perform tasks such as information retrieval and document 
browsing. 

The following is the generative process to generate a corpus 
of documents using the Dirichlet Model per Figure 1: 

 
Choose θ ~ Dirichlet(α) 
For each of the N words wn: 

Choose a topic zn  ~ Multinomial(θ) 
Choose a word wn from p(wn | zn; β), a 

multinomial probability conditioned on the 
topic zn and parameterized by the topic 
distributions β 

 
Figure 1. General Process to generate a corpus of documents using the 

Dirichlet Model 
 

 Inference in most topic models is performed using 
variational inference algorithms. These are heuristic algorithms 
that have the advantage of being very fast as compared to the 
traditional Gibbs Sampling algorithms. In order to perform 
inference using a Gibbs Sampling algorithm, the conditional 
probability of occurrence of a topic for a word in the corpus 
(given the topic labels of the words) is used. Since Dirichlet is 
the conjugate prior to the multinomial distribution, this 
probability turns out to have the following elegant closed form: 

 
This approach is used for sampling the topic for the term w at 
position i. The term 𝑛!!,!

(!)  corresponds to the number of 
occurrences of the term w that are assigned to the topic j, not 
including the current (ith) occurrence. Intuitively, the above 
formula can be interpreted as a word being assigned to a topic 
proportional to its frequency of occurrence in that topic. 

One important aspect of LDA is that it does not directly 
model correlation between the occurrence of topics. In many 
real corpora, it is natural to expect that topics are correlated. 
For example, quantum mechanics and linear algebra are more 
likely to occur together in a document rather than pharmacy 
and linear algebra. LDA does not model this behavior mainly 
because of the use of the Dirichlet distribution. Topic modeling 
algorithms that model topic correlations directly lack the 
mathematical simplicity of LDA, and as a result require more 
complex iterative solvers. 

C. Higher Order Learning 
Higher Order Learning is an approach that utilizes 

relationships between attributes and features across instances.  
Traditional machine learning techniques assume that instances 
are IID (independent and identically distributed).  Such 
traditional methods can be called “zero-order” because they do 
not leverage relationships between attributes. The traditional 
IID assumption does not permit traditional machine learning 
methods to leverage such “higher-order” relationships.   

As shown in Figure 2 below, Higher Order Learning 
utilizes relationships between attribute values across instances.   
In Figure 2, there are three sample instances shown, instances 
V1, V2, and V3. Instance V1 has two attributes, attributes x1, and 
x2, instance V2 has two attributes (x2 and x3), and instance V3 
has two attributes (x3 and x4).  Traditional machine learning 
does not leverage the latent higher order paths.  However, 
Higher Order techniques use these higher order paths to create 
a link between attributes.  In this example, attributes x1 and x4 
are linked by leveraging the higher-order paths between 
attributes V1, V2, and V3. 

One of the thrusts of this research is to evaluate if higher-
order techniques can be successfully used in topic modeling 
algorithms, applied to the detection of nuclear radioisotopes.  
Higher Order Learning has already been shown to work well in 
several other applications in the statistical relational learning 
field. 

D. Problem Definition 
The focus of this research is the evaluation of the use of 

Higher Order Learning in topic modeling. The domain for 
evaluation is the detection and identification of nuclear 
materials.  Given nuclear detection data, harmless radioisotopes 
must be distinguished from those that are potentially harmful. 
Thus, algorithms that can classify nuclear signals are desirable. 
The purpose of this research is thus to demonstrate the validity 
of leveraging statistical relational information in topic models 

in the domain of nuclear detection. 

E. Prior Work 
Prior work was conducted by the second author of this 

paper and Jason Perry on the investigation of the nuclear 
detection dataset [3]. The original data was studied in detail in 
order to learn characteristics of the data. This is very helpful in 

 
Figure 2. Illustration of a higher-order path (Vi are instances, xi are 

attributes) 
 
 

(1) 



determining suitable learning approaches to modeling the data. 
To characterize the nuclear detection data, Principal 
Components Analysis (PCA) and Variance Analysis were 
performed to confirm that the data could be accurately modeled 
in a lower-dimensional space.  For the dataset, promising 
results were found: it was determined that 90% of the variance 
was accounted for using only about 10% of the attributes.  
Following this, a clustering analysis was performed to 
determine if certain isotopes distinguish themselves from other 
isotopes or background “naturally” or not.  Based on these 
experiments, it was concluded that “isotopes” and 
“background” could not reasonably be determined by 
clustering.  This led to the decision to classify the isotopes 
individually, with the algorithms determining if a sample is a 
specific isotope or not (i.e. classified as “absent” or “present”). 

These results led to research done by Nelson and Pottenger 
[8].  In this work, four isotopes were focused on: Ga67, In111, 
I131, and Tc99m.  This research focused on two classification 
algorithms: Naïve Bayes and Higher-Order Naïve Bayes 
(HONB) in order to demonstrate that Higher-Order 
information can be extremely useful in the arena of nuclear 
detection.  The HONB and Naïve Bayes algorithms modeled 
various samples of training data.  Overall, results showed that 
HONB was usually able to outperform Naïve Bayes.  These 
results were consistent in all three of the metrics (Accuracy, 
Weighted Macro Average, and Un-weighted Macro Average).  
This prior work thus demonstrated that Higher Order Learning 
techniques, and in particular HONB, can be useful in the arena 
of nuclear detection. 

III. APPROACH 
This project focuses on classifying topics learned using the 

Latent Dirichlet Allocation (LDA) and Higher-Order Latent 
Dirichlet Allocation (HO-LDA) algorithms on a nuclear 
detection numeric dataset.  HO-LDA will be described in the 
next section.  LDA and HO-LDA learn topics on the nuclear 
detection dataset to obtain a topic decomposition of instances.  
These learned topics are then used as features in a traditional 
supervised classification algorithm.  In essence, the LDA or 
HO-LDA topic assignments are used as features in supervised 
learning algorithms that predict the class (isotope), treating 
LDA or HO-LDA as feature space transforms.  Two different 
approaches for feature creation were explored.  Using Topic 
Modeling on numeric nuclear detection data is cutting edge, as 
to our knowledge this has never been done before on a nuclear 
detection data set. 

A. Higher-Order Latent Dirichlet Allocation 
In this section, we present a novel approach to topic 

modeling based on the Higher Order Learning framework 
called Higher-Order Latent Dirichlet Allocation (HO-LDA).  
As noted in the Background and Prior Work section above, 
traditional machine learning methods only consider 
relationships between feature values within individual data 
instances while disregarding the dependencies that link features 
across instances. In [5], a general approach to supervised 
learning has been developed by leveraging higher-order 
dependencies between features. Unlike approaches that assume 
data instances are independent, this framework leverages 
relations between feature values across different instances. 

Additionally, this framework can be generalized using a novel 
data-driven space transformation that allows any classifier 
operating in vector spaces to take advantage of these higher-
order relations. The utility of this transform has been 
established in algorithms including Higher-order Naïve Bayes, 
Higher-order Support Vector Machines, etc. 

The objective of this aspect of the proposed effort is to 
incorporate higher order information into the framework of 
LDA. We modified the Gibbs-sampling formula of LDA by 
replacing feature frequencies in topics with their higher order 
frequencies. In other words, in equation (1) we replaced these 
counts with higher path counts, ci,j, for the feature w in topic j. 
ci,j is computed as follows, assuming that the input to this 
algorithm is a set of nuclear detection instances, each being 
labeled with a topic index as in [10]: 

 
1. Partition each instance into sets of entities E1, E2, …, 

Ek according to the topics that are assigned. 
2. Each topic j now has a corresponding set of partial 

communications. The higher order path counts ci,j are 
computed exactly the way they are computed for 
Higher Order Naïve Bayes [11], the classes 
corresponding to topics. 

 
This approach holds promise to distinguish more precise 

topics that leverage correlation between topics without 
sacrificing the mathematical simplicity of LDA in favor of 
more complex algorithms that model topic correlation directly.  

B. The Data 
The data for this project was taken from a hand-held CZT 

(Cadmium Zinc Telluride)-based radiation detector, called the 
InterceptorTM.  The InterceptorTM is a Thermo Scientific 
handheld Spectroscopic Personal Radiation Detector.  The 
dataset obtained for this project includes 302 gamma-ray 
spectrum files.  There were instances for 17 isotopes as well as 
background instances included in the 302 instances.  Each of 
these gamma-ray spectrum files contains one spectrum, and 
there are 1024 numeric channels per spectrum, with high 
dimensional space.  Each channel contains an integer count of 
photon interaction events which were recorded within a preset 
detection interval, usually 60 seconds long for a hand-held 
device.  The spectrum covered an energy range from 0 to 
approximately 1.5MeV.   

C. Two Approaches To Feature Creation 
Two approaches were applied to feature creation from the 

nuclear detection dataset.  The methodology was nearly 
identical for the two methods, but the treatment of the dataset 
varied.  The first approach to feature creation treated the 
nuclear detection dataset as multinomial, and is referred to in 
what follows as Multinomial Feature Creation.   This is the 
common approach to topic modeling, which has been primarily 
based on textual data as input. The second method treated the 
highest number of the individual channel readings as the 
number of attributes, and is referred to below as Maximum 
Channel Value.   Both approaches compared topics learned 
using HO-LDA with traditional LDA using various standard 
classification metrics. 



HO-LDA and LDA in the Multinomial Feature Creation 
approach treat the nuclear detection data as multinomial.  The 
data has 1024 channels, so the topic model input consisted of 
vectors of 1024 attributes. Topics were learned using HO-LDA 
or standard LDA.  These learned topics were input into a 
traditional supervised classification algorithm, including a 
decision tree learning algorithm from the WEKA Workbench, 
J48, and Naïve Bayes.  Ten trials were performed for a range of 
number of topics and sample size for both HO-LDA and LDA, 
and these results were then compared using the standard 
metrics of Accuracy, Precision, Recall, and F-Measure to 
determine statistical significance. 

The Multinomial Feature Creation approach first used the 
full dataset with the full attribute set (1024 attributes).  It was 
determined after obtaining some results that the attribute set 
could be pruned prior to learning topics.  Therefore, results are 
mainly presented based on the use of attribute subset selection 
to prune the channels before learning the topic model.  Again 
using the WEKA Workbench, the number of attributes was 
pruned from 1024 to only 39.  This approach was performed on 
both the entire dataset as well as samples of training data (20%, 
25%, 33%, and 50%).  The number of topics chosen to be used 
in LDA and HO-LDA were 5, 10, 20, and 50.  In addition, 
some results are presented at the individual class level.   

In the second feature creation approach (Maximum Channel 
Value), the nuclear detection dataset is directly read into the 
topic model with the highest actual isotope channel reading 
counted as the number of attributes.  This was done using the 
full set of 1024 channels.  The LDA or HO-LDA results based 
on this input are then classified using the decision tree classifier 
J48.  Thirty trials were performed for each sample size and 
topic number, and the HO-LDA results were compared to the 
LDA results using the standard metrics of Accuracy, Precision, 
Recall, and F-Measure using a t-test for statistical significance.  
The entire dataset was examined for this approach, as well as 
samples of the data (20%, 25%, 33%, and 50%).  The number 
of topics chosen for LDA and HO-LDA were 5, 10 and 20, 50, 
and 100.   

IV. THE RESULTS 
In the Results section, results from both the Multinomial 

Feature Creation approach and the Maximum Channel Value  
approach are presented.  Using Multinomial Feature Creation, 
HO-LDA generally performed similarly to LDA, 
outperforming LDA in the 100% case for the 5 and 100 topic 
models. Similar results were obtained for experiments with 
various training sample sizes.  Although not conclusive, the 
results from Multinomial Feature Creation do nonetheless 
indicate that Topic Modeling can be applied to the arena of 
nuclear detection.  In the case of the Maximum Channel Value 
approach, HO-LDA consistently outperformed LDA. These 
results are reported in subsection B following. 

A. Multinomial  Feature Creation 
The Multinomial Feature Creation approach treated the 

nuclear detection data as multinomial data, with a 1024-
dimension feature space.  First, this approach tested the full 
feature space, and then a feature space reduction was 
performed, paring down the number of attributes to just 39.  
Results from both approaches are presented below. 

The full feature space was examined using thirty trials to 
compare HO-LDA with LDA using 5, 10, 20, 50, and 100 
topics.  This was first performed using the full dataset.  For 5 
and 100 topics, HO-LDA outperformed LDA in all four 
metrics used (Accuracy, Precision, Recall, and F-Measure) 
with the single exception of Precision for 100 topics using the 
Naïve Bayes classifier.  See Table 1 below for the Accuracy 
results for the J48 classifier and Table 2 for the Naïve Bayes 
classifier results.  All four metrics were similar when using J48, 
and were mostly the same when using Naïve Bayes.  Next, a 
25% training sample size was examined using both the J48 and 
Naïve Bayes classifiers for 5 topics.  Neither HO-LDA nor 
LDA were statistically significantly better in this case. 

 
TABLE 1. ACCURACY T-TEST RESULTS – HO-LDA VS LDA 

WITH J48 CLASSIFIER FOR MULTINOMIAL 
FEATURE CREATION WITH 1024 ATTRIBUTES 

 
  

  
Accuracy 

#Topics 

Accuracy 
HO-LDA 

Avg. 

Accuracy HO-
LDA Standard 

Deviation 
P 

VALUE 
Accuracy LDA 

Avg. 

LDA 
Standard 
Deviation 

5 0.714 0.020 0 0.695 0.018 

10 0.772 0.013 0 0.791 0.018 

20 0.754 0.014 0 0.785 0.015 

50 0.761 0.016 0 0.778 0.016 

100 0.820 0.010 0 0.755 0.017 
 
TABLE 2. ACCURACY T-TEST RESULTS - HO-LDA VS LDA 

WITH NAÏVE BAYES CLASSIFIER FOR 
MULTINOMIAL FEATURE CREATION WITH 1024 
ATTRIBUTES 

 
  

  
Accuracy 

#Topics 

Accuracy 
HO-LDA 

Avg. 

Accuracy HO-
LDA Standard 

Deviation 
P 

VALUE 
Accuracy LDA 

Avg. 

LDA 
Standard 
Deviation 

5 0.686 0.010 0 0.630 0.009 

10 0.793 0.010 0 0.802 0.008 

20 0.840 0.008 0 0.866 0.006 

50 0.818 0.010 0 0.840 0.008 

100 0.821 0.006 0.016 0.815 0.011 
 
TABLE 3. ACCURACY T-TEST RESULTS - HO-LDA VS LDA 

WITH J48 CLASSIFIER FOR MULTINOMIAL 
FEATURE CREATION WITH 39 ATTRIBUTES 

 
  

  
Accuracy 

#Topics 

Accuracy 
HO-LDA 

Avg. 

Accuracy HO-
LDA Standard 

Deviation 
P 

VALUE 
Accuracy LDA 

Avg. 

LDA 
Standard 
Deviation 

5 0.629 0.016 0 0.706 0.020 

10 0.683 0.014 0 0.670 0.010 

20 0.690 0.007 0 0.700 0.020 

50 0.679 0.015 0 0.638 0.011 
 
  



TABLE 4. ACCURACY T-TEST RESULTS - HO-LDA VS LDA 
WITH NAÏVE BAYES CLASSIFIER FOR 
MULTINOMIAL FEATURE CREATION WITH 39 
ATTRIBUTES 

 
  

  
Accuracy 

#Topics 

Accuracy 
HO-LDA 

Avg. 

Accuracy HO-
LDA Standard 

Deviation 
P 

VALUE 
Accuracy LDA 

Avg. 

LDA 
Standard 
Deviation 

5 0.607 0.012 0 0.748 0.007 

10 0.765 0.007 0.013 0.760 0.006 

20 0.786 0.010 0 0.763 0.012 

50 0.756 0.009 0 0.769 0.011 
 

The next set of experiments performed used the pruned 
attribute size of 39 attributes versus 1024.  Ten trials were 
performed for each experiment to determine if HO-LDA 
produced features that performed statistically significantly 
better than LDA.  First this approach was applied on the full 
dataset using 5, 10, 20, and 50 topics, with classifiers J48 and 
Naïve Bayes.  Using the J48 classifier, HO-LDA outperformed 
LDA with 10 and 50 topics using all four metrics.  Results 
were fairly similar across the metrics.  See Table 3 for the 
Accuracy results.  Results using Naïve Bayes showed that 
while the averages for all four metrics were again similar, the 
statistical significance varied.  Accuracy is shown in Table 4, 
which was also similar to Recall.  However, for Precision, HO-
LDA was not statistically significantly better than LDA.  In 
fact, LDA statistically outperformed HO-LDA for 5, 10, and 50 
topics.  For F-Measure, HO-LDA outperformed LDA 
statistically significantly with 20 topics, while LDA statistically 
significantly outperformed HO-LDA for 5 and 50 topics. 

Next, various training sample sizes were examined for the 
reduced attribute nuclear detection dataset.  In particular, 20%, 
25%, 33%, and 50% training sample sizes were examined for 
5, 10, 20, and 50 topics using both J48 and Naïve Bayes. 

 
TABLE 5. PRECISION T-TEST RESULTS - HO-LDA VS LDA 

WITH J48 CLASSIFIER FOR MULTINOMIAL 
FEATURE CREATION WITH 39 ATTRIBUTES 

 
  

  
Precision 

#Topics 

Precision 
HO-LDA 

Avg. 

Precision HO-
LDA Standard 

Deviation 
P 

VALUE 
Precision LDA 

Avg. 

LDA 
Standard 
Deviation 

5 0.630 0.015 0 0.705 0.021 

10 0.687 0.020 0 0.667 0.012 

20 0.694 0.012 0.669 0.696 0.025 

50 0.678 0.015 0 0.637 0.011 
classifiers.  For the 20% sample size using the J48 classifier, 
LDA outperformed HO-LDA for 50 topics with the Accuracy 
and F-Measure metrics.  For the rest of the metrics and across 
all numbers of topics, neither approach performed statistically 
significantly better.  For the 25% training sample size, neither 
HO-LDA or LDA performed statistically significantly better 
for both J48 and Naïve Bayes.  For the 33% sample size, HO-
LDA performed statistically significantly better than LDA with 
10 topics as measured by both the Accuracy and Recall 
metrics.  When using the Naïve Bayes classifier, LDA 
statistically significantly outperformed HO-LDA with 10 and 
20 topics using the Precision and F-Measure metrics.  For the 
50% sample size, HO-LDA statistically significantly performed 

better than LDA with 10 and 50 topics across all four metrics.  
LDA statistically significantly performed better than HO-LDA 
with 5 topics for all metrics, and with 20 topics for Accuracy 
and Recall.  See Table 5 for the Precision results.  For the 
Naïve Bayes classifier, LDA statistically significantly 
outperformed HO-LDA with 5 topics across all four metrics. 

The next set of experiments employed the pruned attribute 
size of 39 to examine classification at the individual class level.  
This was performed for the 25% sample size with 5 and 10 
topics using both J48 and Naïve Bayes. 

For 5 topics, J48, HO-LDA was statistically significantly 
better than LDA for the isotopes Ra226 and Tl201 for 
Accuracy, Ra226 and Xe133 for Precision, Ra221 and Tl201 
for Recall, and Ir192, In111, and Na22 for F-Measure.  For 5 
topics, J48, 5 topics, LDA was statistically significantly better 
than HO-LDA for Ga67, I123, I131, In111, Na22, and 
Background with Accuracy, for Tc99m, Ga67, I123, I131, 
In111, Na22, and Tl201 with Precision, for Ga67, I123, I131, 
In111, Na22, and Background for Recall, and for I131, In111, 
Na22, Tc99m, Ga67, and I123 for F-Measure.  For 5 topics, 
Naïve Bayes, HO-LDA statistically significantly outperformed 
LDA for Th232 with Accuracy, Ra226 and Th232 for 
Precision, Th232 for Recall, and I125 and Th232 for F-
Measure.  For 5 topics, Naïve Bayes, LDA statistically 
significantly outperformed HO-LDA for Ra226, U235, Ga67, 
I123, I131, and Na22 for Accuracy, for Ba133, Ga67, I123, 
I131, In111, Na22, and U235 for Precision, for Ga67, I123, 
I131, Na22, Ra226, and U235 for Recall, and for Ga67, I123, 
I131, In111, Na22, Ra226, and U235 for F-Measure.   

For 10 topics, J48, HO-LDA performed statistically 
significantly better for Ba133, I131, and Xe133 for Accuracy, 
for Ba133, Th232, Tl201, and Xe133 for Precision, for Ba133, 
I131, Xe133 for Recall, and for Ba133, I131, Th232, Tl201, 
and Xe133 for F-Measure.  

 
TABLE 6.  ACCURACY T-TEST RESULTS HO-LDA VS. LDA 

WITH J48 CLASSIFIER FOR MAXIMUM CHANNEL FEATURE 
CREATION. 

 
Accuracy Accuracy 

 
Accuracy Accuracy 

#Topics 
HO-LDA 

Avg. 
HO-LDA Standard 

Deviation 
P 

VALUE LDA Avg. 
LDA Standard 

Deviation 
5 0.675  0.014  0 0.610  0.012  

10 0.688  0.015  0 0.641  0.014  

20 0.654  0.015  0.021 0.644  0.017  

50 0.665  0.014  0 0.605  0.015  

100 0.565  0.015  0 0.529  0.015  
For 10 topics using J48, LDA statistically significantly 

outperforms HO-LDA for Ga67, In111, and Na22 for 
Accuracy, Ga67, In111, and Na22 for Recall, and for Ir192 for 
F-Measure.  For 10 topics using Naïve Bayes, HO-LDA 
statistically significantly performs better than LDA for Ga67, 
I123, Th232, and U235 for Accuracy, for I123, Na22, Th232, 
and U235 for Precision, for Ga67, I123, Th232, and U235 for 
Recall, and for Ga67, I123, Na22, Th232, and U235 for F-
Measure.  For 10 topics, Naïve Bayes, LDA statistically 
significantly performs better than HO-LDA for Ba133 with 
Accuracy, for I125, I131, Ra226, and Background for 
Precision, for Ba133 for Recall, and for Ba133, I125, I131, 
Ra226, and Background. 



Although these per-class results are somewhat tedious to 
review, they generally confirm that HO-LDA and LDA 
perform similarly using the Multinomial Feature Creation 
approach. 

B. Maximum Channel Value Feature Creation 
As before, the purpose of the Maximum Value Feature 

Creation approach was to determine if HO-LDA techniques 
perform better than LDA on the nuclear detection dataset.  
These results will give insight into the utility of HO-LDA on 
datasets with small number of examples. 

First, trials were performed on the full dataset with 5, 10, 
20, 50, and 100 topics (see Table 6).  Thirty trials were 
performed for each experiment (i.e., thirty trials were run for 5 
topics HO-LDA, and thirty J48 classification trials were run for 
5 topics LDA) to determine statistical significance using 
standard 5 fold cross validation.  The Accuracy metric was the 
one used for these experiments.  In these experiments, HO-
LDA statistically significantly outperformed LDA in all cases.  

Next, experiments were performed using randomized 
stratified training samples of nuclear detection data, and then 
the remaining results were folded in to the LDA or HO-LDA 
model in order to perform classification on all 302 samples.  
Training sizes included 20%, 25%, 33%, and 50%, and the 
number of topics included were 5, 10, and 20.  Again, thirty 
experiments were performed for each test.  Metrics used 
included Accuracy, Precision, Recall, and F-Measure.  With all 
four training sample sizes, HO-LDA statistically significantly 
outperformed LDA in all cases with all four metrics, with the 
exception of the 50% training size, 5 topics, with the Accuracy 
and Recall metrics.  These results illustrate that when using the 
Maximum Channel Feature Creation approach, HO-LDA 
statistically significantly outperforms LDA, especially on small 
samples of training data. 

V. CONCLUSIONS 
In this paper, a novel approach to topic modeling based on 

the Higher Order Learning framework is introduced.  Higher-
Order Latent Dirichlet Allocation is presented, along with its 
application to an important issue in homeland security, nuclear 
detection.  In addition, this work strives to improve topic 
models in the real time environment of online learning.  Using 
topic modeling on numeric nuclear detection data is also 
cutting edge, as to our knowledge this has never been done 
before.  Two methods of feature creation were evaluated, 
including Multinomial Feature Creation and Maximum 
Channel Value Feature Creation.  The Multinomial Feature 
Creation Approach demonstrates that although topic modeling 
can be usefully applied to the arena of nuclear detection, HO-
LDA performed similarly to LDA. In contrast, results for 
Maximum Channel Value Feature Creation illustrate that when 
using this approach, HO-LDA consistently statistically 
significantly outperforms LDA, especially on small samples of 

training data.  HO-LDA outperformed LDA for the entire 
dataset for the number of topics we chose, as well as most of 
the training sample sizes selected.  This is an important first 
milestone in the application of Higher Order Learning in the 
domain of topic modeling. 
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