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ABSTRACT
An increasing number of location-annotated content avail-
able from social media channels like Twitter, Instagram,
Foursquare and others are reflecting users’ local activities
and their attention like never before. In particular, we now
have enough available data to start extracting real-time lo-
cal information from social media. In this paper, we focus
on the problem of hyper-local event detection, with the goal
of enabling a monitoring and alerts system for public man-
agement officers, journalists and other users. We present a
method for real-time hyper-local event detection from In-
stagram photos data, using two computational steps. We
first use time series analysis to detect abnormal signals in
a small region. We then use a classifier to decide if the de-
tected activity corresponds to an actual event. Testing on
a large-scale dataset of New York City photos, our system
detects hyper-local events with high accuracy.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Representation]: Mul-
timedia Information Systems; H.2.8.d [Database Manage-
ment]: Database Applications—Data mining

General Terms
Data Mining

Keywords
Event detection, social media

1. INTRODUCTION
Popular social media platforms like Instagram and Twit-

ter are making available huge amounts of user content that is
associated with an exact location, and shared in real time.
Users voluntarily share, in public settings, photos, videos
and text reflecting their attention, interest, opinions, artis-
tic expression, and – in some cases – what is happening
around them.
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At scale, this data presents an opportunity to discover
hyper-local events using social media content alone. We de-
fine hyper-local events as events detected in a fine granular-
ity, street or building level for instance, rather than city- or
country-level events. These events can range from a con-
cert, an exhibit, to a protest, to an emergency like a fire
or even an explosion. A robust real-time system to detect
hyper-local events could be useful for various stakeholders
like city government, journalists, first responders, and, even
more mundanely, for individuals looking for events to attend
in their local area.

Local event detection using social media data remains a
challenging task. First, much of the content people post
on social media is not event-driven, with a wide range of
topics, subjects and motivations for posting [12]. Thus, the
“event” signal can easily be lost in the sea of available social
media content. This problem is especially acute for local
events, which usually involve only a handful of people. Even
if event content is available, the social media content may
contain remarkably little textual information, which often is
low quality. Finally, the real-time requirement for the task
poses additional constraints given the immense scale of the
data.

Previous efforts have mostly focused on detection of global
(i.e. events detected in global or country level) events in
social media data. These efforts (e.g., [5, 11]), often build
on a significant volume of messages that are associated with
a keyword or a topic. Thus, the methods often require a
large amount of data to accumulate before making a decision
about a detection of event. For example, the work by Becker
et al. [3] uses an incremental clustering method and declares
an event when enough volume of content is seen for each
cluster.

To tackle these challenges, we propose a two-step frame-
work for real-time hyper-local event detection, combining a
time-series predicting component and a classifier. Modeling
this time series correctly and robustly helps detect abnormal
signals that surfaces candidate events in hyper-local areas (a
small geographical area). In the second step, discriminative
features are extracted for the candidate events, and used
to classify the candidate events into “actual” or “false” cat-
egories. Our approach can detect hyper-local events in real
time even when the associated social media data is sparse.

The rest of this paper is structured as follows. In Section
2 we review previous research on event detection in social
media. In Section 3 we define the problem of hyper-local
event detection, and describe the data we collect and used
in this work. Section 4 describes our detection framework in



detail. We present the evaluation and results in Section 5.

2. RELATED WORK
The event detection task was formulated and studied in

multiple domains, and had recently been given specific at-
tention in the context of social media. In earlier work, for
example, academic papers [9] and news article [6] are two
domains where researchers tried to detect research topics
and breaking news. Recently, with the emergence and adop-
tion of social media platforms, there has been significant at-
tention on detecting events from social media services such
as Flickr, Twitter and others. Below, we expand on re-
lated work on social media event detection, which we group
into two themes: document-pivot methods and feature-pivot
method (following [2]).

The main idea of document-pivot method is to group re-
lated social media items (“documents”) using similarity met-
rics based on text and other features. For example, re-
searchers used an incremental clustering algorithm to ac-
cumulate content into topic clusters, and highlight clusters
with high event score as event clusters [3]; Similar methods
were used in [11]. Document-pivot methods were found use-
ful by researchers of IBM Smart City project which used
clustering to detect emergent events in tweets for New York
city [15]. On the other hand, Aiello et al. found that document-
pivot methods suffer from clustering fragmentation problems
and depends on arbitrary threshold for the inclusion of a new
document to an existing topic [2].

Taking a different approach, modeling social media items
as nodes, and the similarity between one and another as
weights of edges, researchers proposed a novel framework of
using graph clustering algorithms like modularity maximiza-
tion to assign items to clusters [18, 21]. Document-pivot
methods have a number of drawbacks: these methods re-
quire an often-arbitrary (and generic) threshold for creating
a cluster representing an event, and may suffer from clus-
ter over- and under-segmention, making the threshold issue
even more critical. As a result, these methods are also likely
to introduce a gap between the time an event happens and
the time an event cluster is detected.

Another approach to detecting events, feature-pivot method,
is to formulate the problem as an abnormal signal detection
task on individual features in the time series. These fea-
tures are often words or phrases, or a set of topic words that
appear in the social media items (extracted via LDA or sim-
ilar methods) [2, 8]. The abnormal signal detection focus
can help avoid the drawbacks encountered in the document-
pivot methods. Previous work suggests that by tracking
time-series built on keywords, finer granularity events could
be detected [14, 21]. Researchers have considered multi-
ple methods for detecting abnormal time series activities,
e.g. using spatial scan statistics [14] or Wavelets [21]. Usu-
ally, though, no further judgement or classification is per-
formed on the detected events. In this work, we use a
geography-based feature (i.e. posts from a geographic area)
and employ of Gaussian Process Regression (GPR) as our
non-parametric time-series prediction algorithm. We incor-
porate a supervised classifier in our framework to further
classify the candidate events.

Indeed, a better understanding of detected events can al-
leviate the effects of noisy data and filter those content con-
taining no event information. For detecting events in specific
domains, such as emergent events, specifying keywords (fire,

firefighter etc) would yield satisfactory results [1, 4, 15]. The
limitation with this scheme is that exhaustively specifying
predefined keywords is not feasible, especially for social me-
dia data. A more general way to filter content is to train
a binary supervised classifier to classify content as event-
related [3, 16]. In this paper, we are pushing the event de-
tection resolution and classification to a hyper-local level,
instead of global or country level achieved previously.

Local event detection was attempted in [19, 20]. Our ap-
proach differs from these in a number of ways. First, we do
not set hard threshold which makes our system more adapt-
able to other data sources. Second, we explicitly model vol-
ume signals and classify the data only when an event signal
is presenting. Third, we present a novel classification model
to separate detected events and improve the event detection
accuracy.

3. PROBLEM DEFINITION AND DATA COL-
LECTING

In this section, we define the task of local event detection
in social media data, and describe the data we collected and
used in this paper.

3.1 Problem Definition
Following the definition from [3], we define our problem

as follows. Consider a time-ordered stream of social media
data M from a geographic location G. At any point in time
t, our goal is to identify real-world local events and their
associated data present in M published before time t. We
assume an online setting for our problem, where we only
have access to data posted before time t.

3.2 Data Collecting and Dataset
In this paper, we consider only geo-tagged data from In-

stagram, a popular photo sharing service. Specifically, we
consider only Instagram photos p with a geocoded field pl
available that indicates the exact coordinates where the pho-
tos were taken. For each photo p, we also have the time of
the photo pt, and the caption pc which is a free text string
a user uses to describe the photo. While focusing here on
Instagram data, we note that this general formulation can
be applied to other data sources, like Twitter.

The dataset we use in the experiments are all the photos
collected from Instagram API during November 15th, 2012
to December 15th, 2012. Specifically, we use Instagram re-
gion query API endpoint to gather all the photos bounded by
a geo-region, (40.6905,−74.0581) and (40.8231,−73.8579)
(representing the New York City area), for a total of 906, 235
photos.

4. LOCAL EVENT DETECTION FRAME-
WORK

In this section, we first give an overview of the architec-
ture for our framework followed by details of the main com-
ponents in our framework. The main components of our
framework include a Gaussian Process Regression (GPR) as
time series prediction model, and a supervised classifier for
candidate event classification.

4.1 Architecture and System Workflow
As illustrated in Figure 1, the system architecture con-

sists of five main modules. First, the data collector reads an



Figure 1: Architecture of our local event detection system.
Including data collector, time-series builder, Gaussian Pro-
cess regression model, alert engine and classifier. Arrows
indicate input and output flow of each module.

Instagram photo stream using the Instagram API service,
and store the photos in database. The photos are used by a
time-series builder, that constructs a time-series model for
each geographic subregion in our data. A geo-region is (in
this work) defined arbitrarily by a bounding box, but could
also be a polygon that represents, for example, a neighbor-
hood. The time series is constructed using the number of
unique users posting in a region G, we call volume, within a
time window t ∈ T , where T is the time span we construct
the time-series.

We train our GPR time-series prediction models for each
geo-region G for the time span T we specify independently
using the time series data for that time span. Once the
GPR models are built, we could make predictions for future
volume in each region. The output of GPR models for each
time t and location G are tuples [µG,t, σG,t], representing the
predicted mean value for volume and associated standard
deviation for volume. The prediction for a certain region
serve as volumes of data we expect to observe given no event
is happening for that region at a certain time.

We denote VG,t as the number of unique users posting for
a geolocation G at time t. If VG,t exceeds the prediction
by some threshold, the alert engine (middle of Figure 1)
would mark that time period t as a candidate event for that
location G. Since a deviation does not necessarily mean
a true event (e.g., can also be due to random noise), we
use a trained classifier to review the features of a candidate
event and mark it as true or false. An intended benefit
of the classification step is that we can keep higher recall,
and to be able to detect hyper-local low-volume events, by
setting a low threshold for the candidate event generation,
assuming the classification step will take care of the precision
requirement.

4.2 Time Series Prediction
We use Gaussian Process Regression (GPR) as our time

series prediction model in our framework. GPR was shown
to perform well in various time-series data including stock
price predicting and electricity usage prediction [10, 13]. In
this section, we briefly introduce to GPR, and provide the
details on how we applied it to the problem at hand.

We use GPR as the time-series predicting model in our
framework for a number of reasons. First, GPR would pro-

duce a prediction with a variance which could be used to
build a confidence interval of the prediction, while other
widely used autoregressive models like STL or ARIMA would
not. Second, by specifying appropriate kernels, GPR adapts
to various kinds of time-series simply by replacing the ker-
nels. Third, once kernels are specified, no other parameters
need to be tuned, an ideal property to reduce the complexity
of our framework.

4.2.1 Gaussian Process Regression Overview
A Gaussian Process is a collection of random variables,

any finite subset of which have a joint Gaussian distribution.
We could simply write a Gaussian Process as

y = f(x) + ε (1)

where f(x) is the real process and ε is a additive independent
identically distributed Gaussian noise with variance σn.

f(x) ∼ GP (m(x), k(x,x′)) (2)

Here, we view the input of a GPR as pairs of vectors x,y
where x could be a feature vector and y could be the tar-
get vector. In this paper, we take y as a single value (i.e.
the volume). In this setting, we could view the feature vec-
tor x as an index, and m(x) is the mean function which is
usually set to zero though not necessarily. k(x,x′) is the co-
variance function which gives the covariance of points f(x)
and f(x′). For example, one widely used kernel function is
squared exponential kernel which specify the covariance of
pairs of random variables as

cov(f(x), f(x′)) = k(x,x′) = σfexp(−
1

2l2
|x− x|2) (3)

σf and l are hyperparameters which control the magnitude
and length-scale of the process. The role of covariance func-
tion in the GPR framework is similar to that of the kernels
used in Support Vector Machine [7]. A particular choice of
such a covariance function induces our assumption of the
underlying function that generate the data.

As any finite subset of a GPR has a joint Gaussian dis-
tribution, when observing a new test point x∗, we could
conditioned on the observed data and get the predictions
mean of f(x∗) as follow

µ(x∗) = k∗
T (K + σ2

nI)
−1y (4)

σ2 = k(x∗,x∗)− k∗
T (K + σ2

nI)
−1k∗ (5)

In the predictive distribution, k∗ is covariance vector
{cov(x∗,x1), cov(x∗,x2), ..., cov(x∗,xn)} where xi is the fea-
ture vector of ith training point. K is the covariance matrix
simply by taking all the pairs of training examples and com-
pute k(x,x′). y would be the values of the target values. We
could interpret the mean prediction as a linear combination
of the target values given a new test point, and the weights
of the linear combination is controlled by the “similarity” of
the test point and the training point which is decided by
the covariance function we choose to use. As in our case, we
are using GPR as time series prediction model, so the only
feature we are using is the time stamp and the target value
would be the volume of data at the specific location. In-
tuitively in time-series prediction, for prediction of a target
point, the closer the training points are, the greater influence
they would have for the target point.



Figure 2: Volume change at Times Square over time binned
by hour

4.2.2 Kernels for Time Series Modelling
Taking the volume binned as one hour unit at Time Squares

for the first week of Dec 2012 as a typical example, we can
see from Figure 2 that there are daily and weekly (mostly
weekend related) periodicity we need to model

To model the properties, we combine the following three
kernels as

Kc = prod{k1, k2}+ prod{k1, k3} (6)

in which k1, k2 and k3 are three separate kernels.

k1(x, x′) = θ1exp(−
2sin2(π(||x− x′||)/θ2)

θ23
) (7)

k2(x, x′) = θ24(1 +
(x− x′)2

2θ5θ26
)−θ5 (8)

k3(x, x′) = θ27exp(−
(x− x′)2

2θ28
) (9)

The operator prod here is an element wise product with
the corresponding elements of the covariance matrix and Kc

is the combined kernel in our GPR model.
We model the time-series using prod{k1, k2} to capture

the daily periodic pattern with disturbances. Since the vol-
ume produced might be conditioned on many unknown real-
world situations such as the weather that day, by using
prod{k1, k2} we allow the “decay away” from the exact peri-
odic pattern which is desirable to tolerate un-modeled noises
in the setting. The second term in Equation 6 is used to
model the long term periodic pattern like weekend spikes.
However, this periodic trending is not static, because since
the date is moving towards to Christmas (In the experiment
we are using data from December 2012, see Section 5 for de-
tails), the trend is slightly rising. Thus, allowing the periodic
kernel to adapt the trend is suitable. The hyper-parameters
forKc is then {{θ1, θ2, θ3}, {θ4, θ5, θ6}, {θ∗1 , θ∗2 , θ∗3}1, {θ7, θ8}}.

4.2.3 Distributed Parameter Estimation and Compu-
tation Complexity

Given the time-series data and choice of kernel functions
as in the section 4.2.2, we need to optimize 11 hyper-parameters.
We follow [13] and adopt setting the hyper-parameters by
maximizing the marginal likelihood.
1θ1, θ2, θ3 and θ∗1 , θ

∗
2 , θ
∗
3 are hyper-parameters for daily peri-

odic kernel and weekly periodic kernel respectively.

The complexity of computing the marginal likelihood is
determined by the O(n3) operation of the inversion of a n
by n covariance matrix K. Though O(n3) operation is ex-
pensive, however, as in our case we are modelling each re-
gion independently and to predict near future we only need
very recent historical data. Therefore the n is small (usu-
ally around 400, see experiment section for detail). The total
complexity for our algorithm is O(kn3) where k is the num-
ber of geo-regions we divide. In our setting, k = 625 and
we use a cluster of 60 machines to parallelly build the GPR
models which could finish building within 1 hour on our live
system.

4.3 Candidate Event Classification
In the first step of our two-stage event detection framework,
the time series GPR-based model outputs a set of candidate
events. However, not all of the candidate events are actual
events. In fact, to improve recall, we aim to set the threshold
of GPR as low as possible, so that more candidate events are
collected, also resulting in a large number of false positives.
To filter out these false positives, we use a supervised clas-
sifier. In this section we explain how we classify a candidate
event into one of actual/false event categories.

DKL(Pc||Pch) =
∑

w∈Wc∪Wch

Pc(w) ln
Pc(w)

Pch(w)
(10)

D(c, ch) =
1

2
[DKL(Pc||Pch) +DKL(Pch ||Pc)] (11)

Each of the candidate events is a set of content items
MG,t, representing the items shared from location G at time
t where the event was detected. We compute 22 features for
each candidate event based on these content items. In our
case, each item is an Instagram photo. It should be noted
that even if a candidate event captures an actual event, it is
likely that there are items in the set that are not related to
the event, but were still posted at the same place and time.
Therefore, we need to design not only discriminative but also
robust features to prevent from the impact of “noisy” items.
Specifically, we consider four types of features for a candi-
date event: spatial, textual, meta and historical features.
The complete list of features is shown in Table 1.

4.3.1 Spatial Features
Spatial features capture the geographical distribution of

items in candidate events. The assumption is that reports of
actual physical-world events are geographically proximate to
each other, and are likely to form a dense cluster with small
diameter even in an already-constrained geographical region.
Given the latitude and longitude information of all items,
we compute three geographic distribution features for each
candidate event. First, we compute the mean of pairwise
Euclidean distance between items in the candidate event, as
well as the standard deviation. However, this formulation is
sensitive to outliers. Thus we use a third feature we call geo-
entropy. We evenly divide the regionGc where the candidate
event c is taking place into k smaller subregions gci (1 ≤
i ≤ k), and compute the probability distribution P (x = gci )
that an item x is posted in the subregion gci in Equation
12. The geo-entropy E(c) is the entropy of the probability



Category Name Description

Spatial
Average geo-distance Mean of pairwise item geographical distance
Std of geo-distance Standard deviation of pairwise item geographical distance
Geo-entropy Entropy of item geographical distribution (k = 9)

Textual

Top-k word popularity Average frequency of top-k words (k = 3)
Top word popularity 1 Frequency of items containing the most frequent word
Top word popularity 2 Frequency of items containing the second-most frequent word
Top word popularity 3 Frequency of items containing the third-most frequent word
Average caption distance Mean of pairwise caption topic distribution KL-divergence
TFIDF value 1 The largest TFIDF value of all words
TFIDF value 2 The second-largest TFIDF value of all words
TFIDF value 3 The third-largest TFIDF value of all words
Hashtag popularity 1 Frequency of items containing the most frequent hashtag
Hashtag popularity 2 Frequency of items containing the second-most frequent hashtag
Hashtag popularity 3 Frequency of items containing the third-most frequent hashtag

Meta

Average caption length Average length of captions
Caption percentage Percentage of items with a non-empty caption
Predicted std Predicted standard deviation by GPR
Z-score Deviation of the predicted volume from the observed volume
Top location popularity Frequency of the most frequent location tag

Historical
Geo-distance difference Difference between the average geo-distance of c and ch
Geo-entropy difference Difference between the geo-entropy of c and ch
Topic difference KL-divergence between the caption topic distributions in c and ch

Table 1: Complete feature table for a candidate event c

distribution P (x), and captures the geographic distribution
of the items in a more robust fashion.

P (x = gci ) =
# of items in gci∑k
j=1 # of items in gcj

(12)

E(c) = −
k∑
i=1

P (gci ) lnP (gci ) (13)

4.3.2 Textual Features
The majority of items are associated with a short caption

(e.g. “I love #Knicks”); we expect that the topics in the
captions of actual events are more semantically consistent
with each other than those of non-events. However, a cap-
tion is too short (53 letters including symbols on average in
our data) to build topic models. Instead, for each candidate
event, we extract 11 features by computing the normalized
frequency and TFIDF value of top-k words (ranked by nor-
malized frequency and TFIDF value respectively) in Table
1. We also parse out hashtags, e.g. #Knicks, from cap-
tions, and compute their normalized frequency as features.
If the values of these features are very large, items within
the candidate event are semantically consistent with each
other, which might indicate an actual event.

4.3.3 Meta Features
The basic characteristics and statistics of the candidate

event can also provide information about its nature. We
use several “meta” features that reflect the basic but dis-
criminative information of a candidate event: a) the Z-score
of a candidate event (its deviation from expected volume)
together with the predicted standard deviation computed
from GPR time series model; b) the average caption length
and the percentage of items with a caption; c) the normal-

ized frequency of the most frequent location tag (e.g. Seoul
Garden) in each candidate event.

4.3.4 Historical Features
The spatial, textual and meta features listed above ignore

the background information, e.g. the geographical distribu-
tion of items in the region when no event is taking place.
The occurrence of an actual event is likely to influence the
item distribution in that region. Motivated by this, for each
candidate event c, we first create its background by aggre-
gating all the items posted in the same region and the same
period across each day of the past week, as a dummy event
ch corresponding to c. We compute several “historic” fea-
tures to quantitatively express the difference between the
item distribution of candidate event c and its background
ch. First, two features quantify the change of item graphi-
cal distribution caused by the occurrence of an actual event:
the difference between the geo-distance of c and ch and the
difference between the geo-entropy of c and ch. Second,
we design features that capture the divergence in topic be-
tween event items and other items in that region using the
averaged KL-divergence between the caption topic distribu-
tions of c and ch. As shown in Equation 10 and 11, Wc

and Wch denote the vocabulary constructed from c and ch
respectively. Pc and Pch denote the word frequency distri-
bution (bag-of-words model) of c and ch respectively where∑
w∈Wc

Ph(w) = 1 and
∑
w∈Wch

Pch(w) = 1.

5. RESULTS
In this section, we evaluate the trade off in setting the

size of subregion, G. We then evaluate the effectiveness of
GPR as candidate event detector, and our schema of feature
extraction, by comparing them with baselines in the litera-
ture. Finally, we report the accuracy of our framework for
the local event detection task.



5.1 Tradeoff of Subregion Size
To detect events, the first step in our framework identifies

abnormal activity using the time-series we build for each
geo-region G, as described in Section 5.2. However, an open
question is how large or small the area G can be to robustly
and reliably detect abnormal activity. If the area G is too
large, we will not be able to detect smaller events that do
not have a large volume of posts. If the area G is too small,
the volume curve for each region would become extremely
variable and volatile, generating too many candidate events.

We experiment with four different size configurations, in-
cluding equally dividing our overall region (covering New
York City) into 10 × 10 (2.72 square kilometers, averagely
767 photos per square each day), 15× 15 (1.21 square kilo-
meters, averagely 340 photos per square each day), 20× 20
(0.68 square kilometers, averagely 191 photos per square
each day) and 25 × 25 (0.43 square kilometers, averagely
122 photos per square each day) regions. For each setting,
candidate events are generated, randomly sampled and an-
notated . We use Eventration as defined in Equation 14 as
a metric to measure the ratio of actual events in all the can-
didate events detected, and this metric is used to evaluate
how good each dividing setting is. Intuitively, the higher the
Eventratio is, the better we could eliminate noise and keep
more actual events. We find that the 20 × 20 setting (0.43
square kilometers) performed best in terms of Eventratio.
Due to page limitation we eliminate details here. Below, we
use this subregion size in all our experiments.

5.2 Effectiveness of GPR in Event Detection
The goal of using a time series model in our framework

is to initially identify candidate event signals. As such, we
expect the GPR process to identify many candidate events,
most of them false. Our goal here is to examine the GRP
output to learn more precisely about the ratio of true to false
events detected, and compare it to a baseline method. We
use Eventratio as in Equation 14 as a metric. Recall that the
method that has higher Eventratio value could detect more
actual events while introducing less noise. We compare our
GPR model with a baseline method we call Hourly Window
method. The baseline models the dynamics of volume within
a day for each hour, such as 12:00 to 13:00, as the average
of the same hour over all the days in historical data. Also, a
standard deviation could be computed in the same manner.
An event will be detected by this baseline if the volume
deviates 3σ threshold from the mean (3σ is also set for GPR
as well; we settled on it by experimentation).

Eventratio =
# of actual events

# of candidate events
(14)

We generate two sets of candidate events using GPR and
the baseline respectively. To this end, we imitate a stream-
ing of data which “flow” sequentially over the first week of
December. For each day of that week, we build time-series
at 00:00 of each day for all the subregions using 2 weeks of
historical data. We found two weeks of data is enough to
model the daily and weekly periodicity.

We computed models for all our regions G; as there are
25 by 25 subregions that we are dividing into, 625 separate
GPR models needed to be built, for each day of our test.
For each time series, we use a bin of one hour, giving us
336 data points for the 14 days of historical data. These are
relatively low numbers, making the O(n3) time for building

a GPR model acceptable. Nevertheless, we use a cluster of
60 machines to train the GPRs in parallel. To avoid local
minimum as described in Section 4.2, we randomly sample
the initial hyper-parameters 20 times and choose the one
with the best marginal likelihood. That is, for each day,
12,500 GPR models need to be trained (20×625). We could
complete all the computation on the cluster within one hour,
and this training process only needs to be done every 24
hours in an offline fashion. For the baseline, we compute
the hourly mean and standard deviation for each hour, and
use the mean and variance for that day as predicted mean
and predicted variance.

Then, in real time, every 5 minute, by comparing the pre-
dicted volume with what is observed in that subregion from
the data streaming, we generate a candidate event when
the volume exceeds the predefined threshold, 3σ. We pro-
duce candidate events from December 1st to December 7th
using both GPR and baseline model. Two of the authors
randomly labeled a random set of 150 candidate events gen-
erated by each of the two models (the annotator agreement
with high with κ = 0.85; below, we use crowd sourcing to
generate a larger ground truth dataset of candidate events).
The results are shown in Table 2. As we can see in the table,
GPR and the baseline generate roughly the same number of
candidate events while GPR has two times of Eventratio as
baseline method. We conclude that using GPR would effec-
tively generate candidate events with a higher Eventratio.
In the following experiments, we use GPR to generate can-
didate events.

5.3 Evaluation of Event Classification
As noted above, the candidate events, by design, could be

false alarms. We train a classifier using features discussed
in Section 4.3. In this section, we evaluate the accuracy of
our classification compared to the approached introduced in
[3, 17], which we refer to it as Text-baseline.

5.3.1 Data Annotation and Ground Truth
In the experiments, we use Instagram data from the first

week of December to generate candidate events (as described
in Section 5.2). To get the ground truth labels for candidate
events we generate, we used CrowdFlower, a crowd-sourcing
platform. We got multiple annotations for each of the 2, 558
candidate events generated for the first week of December
by GPR. For each candidate event, we created a page that
showed the photos with captions in that candidate event.
Following our definition, for each event, we asked the anno-
tators to look over the content items for that event (usually
not more than a few dozens), and determine whether there
exist at least three photos consistently describing an unusual
activity or abnormal occurrence.

For each candidate event, we ask two annotators to anno-
tate it independently. We discard all the candidate events if
the two independent annotators disagree with each other on
their labels. Of 2, 558 candidate events, 865 candidate events
(34%) were discarded, 181 were marked as true events (7%),
and 1, 512 were marked as non-events (60%).

5.3.2 Evaluation Setup
We use the 1,693 annotated candidates events and evalu-

ate each of the classification setting using 10-fold cross val-
idation. We report results using logistic regression, Naive
Bayes and SVM classifiers. We use the following settings:



# of Candidate Events # of Sampled Event # of Actual Event in Sample Eventratio
GPR 2558 150 20 13.3%

Hourly Window 2492 150 10 6.6%

Table 2: Eventratio for GPR and Hourly Window method

• Text-baseline: Baseline setting. Regard all the caption
in a candidate event as a document and compute the
TF-IDF features for each document as a feature vector.

• STMH features: The feature extraction schema used
in our framework, including Spatial features, Textual
features, Meta features and Historical features, all dis-
cussed in Section 4 (abbreviated as STMH features).

In [3], the authors noted that the data is highly skewed to-
wards negative examples, and resampled the events to equal-
ize positive and negative examples and generate a balanced
dataset. However, resampling would make the task artifi-
cially easy because either use their clustering method or our
GPR model, we would generate more non-events than ac-
tual events. Thus, we report results both balanced data (for
comparison) and unbalanced data. Note that for unbalanced
data, the accuracy we report is balanced accuracy which is
defined as Equation 15. Using this metric could avoid the
classifier taking advantange of the imbalanced data (classify
all future data as the majority class) since if so the balanced
accuracy would drop to chance.

5.3.3 Evaluation Results
The results appear in Table 3. Each row of this table is

different settings with various classifiers (NB, LR, SVM),
and columns are the evaluation metric on both resampled
data and unsampled data. Standard metrics are used here
including precision, recall, as well as accuracy and Fscore as
defined in Equation 16 and Equation 17 . We observe that no
matter on unsampled data or resampled data, our approach
outperforms the baseline. Specifically, on resampled data,
our approach performs 3.2% to 15.6% more accurately than
the baseline method with respect to accuracy on either Naive
Bayes, Logistic Regression or SVM. On unsampled skewed
data, which is the actual situation we need to deal with in
real world, our approach performs 11.6% to 24.4% more ac-
curately than the baseline. The best accuracy of 89.3% is
achieved using Logistic Regression on unsampled data. The
results demonstrate that our selection of features could dis-
tinguish actual events and otherwise more effectively than
the baseline. Especially, our approach outperforms the base-
line significantly on unsampled data.

balanced accuracy =
0.5 ∗ TP
TP + FN

+
0.5 ∗ TN
TN + FP

1 (15)

accuracy =
TP + TN

TP + FP + FN + TN
(16)

Fscore = 2 ∗ precision ∗ recall
precision+ recall

(17)

1TP=True Positive, TN=True Negative, FP=False Positive,
FN=False Negative

As event detection algorithms are ultimately used to de-
tect events in the future using data from the past which
means there should be chronological order of training and
testing data we use. To ensure our method is able to detect
events on unseen future data stream, one more experiment
is performed. We use annotated candidate events from the
first week of December as training set, and test on the candi-
date events generated during the second week of December
to show how the SMTH features could generalize regard-
less of when the candidate events are generated. For this
task, we obtain 86.9% accuracy using SVM, which is close
to the best accuracy 89% we obtain using cross-validation
and these results demonstrates our framework could gener-
alize its event detection ability to unseen future data.

5.4 Qualitative Analysis of Detected Events
In this section we qualitatively analyze some of the events

our system detected during the first weeks of December. The
various categories of hyper-local events detected included
concerts, sport games, exhibits. We coded the events to
categories, and the results are shown in Table 4. The diverse
categories of events show that our system could detect not
only major events like concert but also minor yet important
or urgent events like protesting and car explosion. Also, the
locations of the 12 events that are detected distribute from
Brooklyn to Times Square, which indicates our system cover
wide range of the city.

An examination of the detected events shows two events
for the evaluation period that took place in Manhattan’s
Time Square, one of these, for instance, was a protest, an-
other event is that stars from The Hobbit showed up at Time
Square and people crowed to take photos. These events
show that hyper-local events can be detected even in a very
popular area, where scores of tourists take thousands of pic-
tures and upload to Instagram every day. Our system also
detected other emergencies. Photos of a critical event are
shown in Figure 3, in chronological order: a car caught fire,
and then policemen came followed by firefighters. In our sys-
tem log, we detected the explosion only five minutes after
the car caught on fire as shown in the first photo of Figure 3.
The events our system detect demonstrate our system has
the desired capability of extracting event signals from noisy
and sparse social media data in real time.

6. CONCLUSION AND FUTURE WORK
In this paper, we studied the task of robustly detecting

hyper-local events from social media data. Social media has
become a vital information source; accurately detecting local
events from social media could benefit various stakeholders
including journalists, city government employees, first re-
sponders – and people who simply wish to explore events
happening around them.

On the other hand, the task is challenging given the amount
of noise in social media signals. We address the problem us-
ing a framework consisting mainly of two parts, the Gaussian



Resampled Data Unsampled Data
Precision Recall Fscore Accuracy Precision Recall Fscore Accuracy2

Text baseline
NB 0.87 0.68 0.76 0.79 0.30 0.57 0.40 0.71
LR 0.74 0.65 0.69 0.71 0.17 0.66 0.28 0.64

SVM 0.81 0.75 0.78 0.79 0.21 0.73 0.32 0.70

SMTH
NB 0.92 0.71 0.80 0.82 0.64 0.69 0.67 0.82
LR 0.88 0.85 0.86 0.87 0.51 0.88 0.65 0.89

SVM 0.85 0.86 0.86 0.85 0.49 0.87 0.62 0.88

Table 3: Classification results on balanced data and unbalanced data comparing with baseline

Figure 3: An car explosion accident detected by our frame-
work ordered by chronological sequence

Process regression time-series predicting model used to de-
tect abnormal signal and the event classifier used to further
judge whether the abnormal signal is an event. The frame-
work we described could effectively eliminate the noise exist
in social media streaming data, and is capable of detecting
building-level events robustly and with high accuracy. We
validate our framework on a large scale dataset we collect
from Instagram containing all the photos taken in New York
City during November and the first two weeks of December.
The results are promising that various types of events are
found including minor but critical events.

We used Instagram in this work, but our framework is
adaptable for various social media streaming types that sup-
port geolocation information including Twitter, Facebook,
and Foursquare. By replacing suitable kernels in Gaussian
Process regression models and engineer suitable features, the
framework is flexible enough to extend to other data sources
without much work. However, it is an open question whether
other services that are not based on photographic documen-
tion reflect events in the same way that Instagram does.
And also, the data quality, for example the accuracy of gps
data on different platforms might differ thus influence the
result of detected events. In future work, we intend to in-
vestigate whether events can be detected in streams of dif-
ferent types, and whether these streams detect and highlight
different types of activities. We would also aim to combine
multiple streams, as well as to categorize the events detected
automatically.
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